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Abstract
Eigen-modes of unconfined ferromagnetic media (spin waves) were introduced
by Bloch to explain the thermodynamics of ferromagnets. In this paper
we analyse the eigen-modes of laterally confined magnetic structures. The
quantization of eigen-modes due to the finite size of the structures as well as
their localization due to the recently discovered spin wave wells effect will be
considered in detail. A general description of magnetic dynamic eigen-modes
in media with a strongly nonuniform internal field, important for confined
structures, will be presented. Pictorial effects of spin wave propagation,
reflection and tunnelling caused by field inhomogeneity will be demonstrated
and discussed.

1. Introduction

The concept of lowest lying dynamic eigen-modes of unconfined magnetic media called spin
waves was introduced by Bloch in 1930 [1]. Early experimental evidence for the existence
of spin waves came from measurements of thermodynamic properties, but the first direct
observation was made by means of ferromagnetic resonance (FMR) [2] and the next by means
of light scattering [3]. In quantum mechanical approaches the spin wave quanta, magnons, are
similar to quanta of light, photons, or those of acoustic waves, phonons. However, as will be
discussed in this paper, spin waves, or magnons, have a very characteristic dispersion. Unlike
phonons or photons, they usually have a gap in their spectrum which depends on the applied
magnetic field and, thus, can be manipulated by a researcher.

An infinitely propagating plane spin wave is not an eigen-mode of a small magnetic
element due to confinement effects. Small magnetic elements made by patterning of magnetic
films have recently received much attention from the scientific community, since they are
a basic part of, for example, magnetic sensors in magnetic reading heads and in magnetic
random access memory (MRAM). The basic knowledge on dynamic eigen-modes of patterned
magnetic structures is mandatory for the understanding of dynamic processes, in particular
those involved in fast switching of the magnetization direction.

Magnetic systems possess a peculiarity, unusual for other systems: since the elements are
magnetized, the magnetization generates magnetic stray fields inside and outside the elements.
These strongly inhomogeneous fields determine the intrinsic inhomogeneity of the internal field
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distribution within the element. Therefore understanding of magnetization dynamics in small
elements demands explicit consideration of spatially varying internal fields, which, on one
hand, makes the problem more complex and, on the other hand, results in new phenomena,
such as the localization of modes in certain regions within the element.

The outline of the paper is as follows. After a short description of the preparation
of patterned magnetic structures and presentation of typical examples of such systems in
section 2, we will analyse dynamic eigen-modes in inhomogeneous media. In particular,
spin wave quantization caused by the lateral confinement in small elements will be addressed
in section 3. In the same section the analogy between spin wave propagation and that of a
quantum mechanical particle will be considered. A very important tool for investigation of
magnetic dynamics is the Brillouin light scattering (BLS) technique, which will be discussed
in section 4. Section 5 is devoted to space and time resolved BLS. The advantages of BLS will
be demonstrated in section 6 using the example of the quantization of spin waves in axially
magnetized magnetic stripes. An experimental study of spin waves in strongly inhomogeneous
fields, demonstrating spin wave propagation, reflection and tunnelling through a potential
barrier, will be presented in section 7. The appearance of localization effects of spin waves in
small elements due to the inhomogeneity of the internal field, an effect which is reminiscent
of the quantum well effect in quantum mechanics, will be discussed in detail in section 8.
Section 9 concludes this paper.

2. Magnetic patterning

In the past decade remarkable progress in the fabrication of high quality patterned magnetic
structures with lateral extents on the micrometre, sub-micrometre and nanometre length scales
has been made [4–6].

Lateral magnetic structures are conveniently fabricated from different magnetic films using
lithographic patterning procedures. Patterned systems based on permalloy (Fe–Ni alloy) have
the utmost importance in fundamental studies. The low coercive field, small constants of the
intrinsic magnetocrystalline anisotropy and magnetostriction, narrow lines of FMR and light
scattering facilitate the observation of sometimes minute effects caused by, e.g., the spin wave
well effect. However, patterned structures made of Co-based alloys with their higher coercive
fields are more important for information technology applications, such as in MRAM.

It is usually extremely difficult to study a single magnetic element, since this challenges
the sensitivity of the measurement set-up [7]. To avoid this problem the elements under
investigation are usually assembled in arrays. The patterns determining the array layout can be
numerous [8]. However, systems comprising elements with one restricted lateral dimension,
called ‘stripes’, are of particular importance. As will be seen below, applying the external field
either along or perpendicular to the stripe axis, one can study different confinement effects.
Similarly, elements with two restricted dimensions are called circular ‘dots’ or rectangular
‘elements’ following the usual conventions,although, as will be one of the subjects of this paper,
no real reduction of dimensionality occurs since both in ‘stripes’ and ‘dots’ the magnetization
is not constant over each magnetic object along a direction of restricted dimension.

The patterning process is most often performed by means of electron beam lithography
(EBL) [9–11] or x-ray lithography (XRL) [12], followed by ion beam etching for pattern
transfer.

Figure 1 shows scanning electron micrographs of dense arrays of permalloy rectangular
elements, circular dots and stripes, demonstrating the quality which can be achieved by those
techniques.
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Figure 1. Scanning electron micrographs of permalloy arrays of rectangular elements obtained by
EBL and also circular dots and long stripes with different distances between the stripes obtained
by XRL. The Cartesian coordinate system used later in the text is shown as well.
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Figure 2. (a) A magnetic force microscopy image of a Fe/Cr/Fe layered system patterned by an
ion beam. A clear difference between the high moment and low moment areas is seen due to the
observed domain patterns; (b) an AFM image of the same systems showing a tiny (the height of
the step is below 3 nm) effect of the ion beam on the surface morphology of the system.

Very recently ion beam irradiation was used for patterning of the magnetic properties of
Co/Pt [6, 13] and Fe/Cr [14] layered systems. The advantage of this technique is that the
patterning process just slightly affects the mesoscopical and macroscopical roughness of the
sample surface and its optical and tribological properties. The ion beam patterning causes
atom exchange at the interfaces of the layered systems, which is the main determinant of the
properties of the system. It allows one to create adjoining regions with very different magnetic
properties, such as perpendicular versus in-plane magnetization in the Co/Pt systems and high
moment versus low moment magnetization in the Fe/Cr systems. The effect of ion beam
patterning of a Fe/Cr/Fe bilayer is demonstrated in figure 2.
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3. Spin waves in restricted geometries and in inhomogeneous fields

Lateral patterning dramatically changes the dynamic properties of magnetic systems due to
lateral confinement. Up to now two main types of confinement effect have been distinguishable:
those connected with lateral wavevector quantization within a magnetic element and those
connected with the inhomogeneous static internal field caused by the finite lateral size of
the element. The influence of both effects on the magnetic dynamics is sometime quite
complicated [8, 15]. However, in the particular case of thin elements with d � w, where
d is the thickness of the elements and w is its lateral size, the spectrum of magnetic excitations
in the element can be described on the basis of the well known properties of spin waves in
magnetic films [16, 17]

The dipole-exchange spin wave spectrum in an unlimited ferromagnetic medium is given
by the Herrings–Kittel formula [18]

ν = γ

2π

[(
H +

2A

MS
Q2

)(
H +

2A

MS
Q2 + 4π MS sin2 θQ

)]1/2

, (1)

where γ is the gyromagnetic ratio, A is the exchange stiffness constant, �H and �MS are the
applied magnetic field and the saturation magnetization both aligned along the z-axis, �Q is the
three-dimensional wavevector and θQ is the angle between the directions of the wavevector
and the magnetization.

In a magnetic film with a finite thickness d the spin wave spectrum is modified due to the
two dimensional confinement. An approximate expression for spin wave frequencies of a film
can be written in the form, analogous to equation (1) (see equation (45) in [17]),

ν = γ

2π

[(
H +
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MS
Q2

)(
H +

2A

MS
Q2 + 4π MS Fpp(qd)

)]1/2

, (2)

where

Q2 = q2
y + q2

z +

(
pπ

d

)2

= q2 +

(
pπ

d

)2

. (3)

Here in agreement with figure 1 the normal to the film surface points along the x-direction. q is
the continuously varying in-plane wavevector, Fpp(qd) is the matrix element of the magnetic
dipole interaction and p is a quantization number for the so-called perpendicular standing
spin waves (PSSW), which is determined by the so-called ‘Rado–Wertmann’ boundary
conditions [19] for the dynamic part �m of the magnetization on the film surfaces:

± ∂ �m
∂x

+ D �m|x=±d/2 = 0. (4)

with the so-called pinning parameter D determined by the effective surface anisotropy, kS, and
the exchange stiffness constant A: D = kS/A. One can also define a pinning length ξ = 1/D.
The physical meaning of ξ is quite apparent: if the typical length of the problem (e.g., the
thickness of the film, d) is much larger than ξ , a strong pinning takes place; if, in contrast,
d � ξ , the mode is essentially unpinned.

If the film is magnetized in the plane and �q ⊥ �MS, neglecting exchange (A = 0), the
dispersion equation for the lowest thickness mode (p = 0) obtained from equation (2) gives
results that are very similar to the results obtained by Damon and Eshbach [16]:

νDE = γ

2π
[H (H + 4π MS) + (2π MS)

2(1 − e−2qd)]1/2. (5)

In contrast, if �q‖ ‖ �MS, the so-called backward volume magnetostatic (BVMS) mode
occurs. Its dispersion is quite unusual: the wave frequency decreases with increasing
wavevector.
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Figure 3. Spin wave/particle reflection by a region of inhomogeneous field/gap. (a) The wave has
a positive group velocity; (b) the wave has a negative group velocity.

The above theoretical analysis is based on the Landau–Lifshitz equation [20]. Although
this equation is not similar to the Schrödinger equation, describing quantum mechanical
particles, properties of spin waves are very similar to those of quantum mechanical particles.
The main reason for the similarity of the properties is the similarity of the dispersions of the
spin waves and the particles. In fact, unlike light waves or acoustic phonons, spin waves have
a gap at zero wavevector in their dispersion spectrum. The gap can be caused by different
interactions: Zeeman energy of the applied field, energy of magnetic anisotropy or dipole–
dipole interaction energy. For the simplest case of unconfined magnetic media and neglecting
the dipole–dipole interaction and magnetic anisotropies, the spin wave dispersion spectrum
can be written as follows:

hν = h̄ω = � +
2h̄γ A

MS
q2, (6)

where � = h̄γ H which is reminiscent of the dispersion of a particle in a potential field U(x):

E = h̄ωel = U(x) +
h̄2

2m
q2. (7)

The similarity is even more obvious if one implies that the applied field H is inhomogeneous,
H (x):

hν = h̄ω = �(x) +
2h̄γ A

MS
q2. (8)

Thus, the propagation of a spin wavepacket in an inhomogeneous magnetic field is in many
of its consequences similar to that of a quantum mechanical particle: if during its propagation
the packet enters a region of changing values of the gap, it must change its wavevector to
fulfil the energy conservation law. If the value of the gap in some region exceeds the value
of the initial energy of the magnon, the wave is reflected from the region. The effect of spin
wave reflection is illustrated in figure 3. If during its propagation a wave with a frequency
ω0 moves from a region with the field H1 to one with the field H2, there is a possibility of
fulfilling the dispersion law for both ω0 and H2 by decreasing the wavevector. The wave keeps
propagating through the inhomogeneous field, albeit with changing wavevector. However, if
the local field increases further, at some point it reaches a region with the field H3, where the
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minimum allowed frequency (the gap) is above ω0. There exists no real wavevector fulfilling
the dispersion law for both ω0 and H3. The wave must be reflected at this point. Similarly to
in quantum mechanics, in addition to reflection one should expect in some cases the effect of
spin wave tunnelling. The effects of spin wave reflection and tunnelling will be experimentally
demonstrated in section 7 of this paper.

Note here a very peculiar feature of propagation of the BVMS wave in an inhomogeneous
field. In fact, the frequency of the BVMS wave decreases with increasing wavevector and
the allowed states are situated below the zero wavevector gap. Thus, to realize reflection of a
spin wavepacket from the field inhomogeneity, one should not increase, but decrease the field
(gap). In this sense electronic holes are the quantum mechanical counterpart of the BVMS
waves. The situation is illustrated in figure 3(b).

As was discussed in the previous section lateral structuring can create confined magnetic
elements with different patterns. However, in all cases the shape of the element is non-
ellipsoidal. This means that the demagnetizing field (the statical as well as the dynamic one) is
inhomogeneous. Together with the applied field this field produces an inhomogeneous internal
field of the element. This effect is especially strong near the side edges of the element, which
are perpendicular to the magnetization. For example, if a magnetic stripe is magnetized along
its width a strong inhomogeneous static demagnetizing field creates regions of zero internal
field near the side edges, where the static magnetization is not saturated. On the boundary
between these zero field regions and the saturated regions in the middle of the stripe the field
inhomogeneity reaches its maximum. Therefore, under some circumstances, a spin wave
entering the saturated region from the zero field region is reflected by the field profile in the
same way as was discussed above for unrestricted media. Since the wave is also confined by
the stripe edges on the other side, it is localized; a so-called spin wave well is created [21, 22].
In this well, localized states are created, whose number depends on the depth of the well [23].
The spin wave well effect will be discussed in detail later in this paper.

If an element with two laterally confined dimensions is studied the internal field will be
inhomogeneous at all orientations of the applied field. In contrast, if a long magnetic stripe
with only one confined dimension (its width) is investigated, one can avoid any inhomogeneous
static internal field, if the external field is applied along the length of the stripe. In this case
the spin wave well effect is absent and the only effect of lateral confinement is spin wave
quantization along the width of the stripe [24–26].

4. Brillouin light scattering technique

Together with FMR and time resolved magnetization measurements using magneto-optical
techniques, BLS is mainly used for studies of magnetic dynamics. In the field of patterned
structures BLS has a number of advantages. It combines the possibility to study the dynamics of
patterned systems in the frequency range beyond 100 GHz (the corresponding time resolution
is 10 ps) with a high lateral resolution of 1–2 µm defined by the size of the laser beam
focus. However, as will be discussed in this section, BLS can be used in a so-called ‘Fourier
microscope’ mode with an effective resolution below 0.2 µm. There being no need for
additional excitation techniques makes BLS especially successful in studying complicated,
strongly confined spin wave modes.

As illustrated in the inset of figure 4 a beam of monoenergetic photons of wavevector �qI

and frequency ωI = c�qI interact with a magnon, described by �q and ω. The scattered photon
gains an increase in energy and momentum:

h̄ωS = h̄(ωI + ω) h̄ �qS = h̄(�qI + �q), (9)
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Figure 4. A typical spectrum of BLS from spin wave excitations. Inset: an illustration of the
scattering process.

if a magnon is annihilated. From equation (9) it is evident that the wavevector �qS − �qI ,
transferred in the scattering process is equal to the wavevector �q of the magnon. A magnon
can also be created by energy and momentum transfer from the photon, which in the scattered
state has the energy h̄(ωI − ω) and momentum h̄(�qI − �q). Since for room temperature
(TR � h̄ω/kB ≈ 1 K) the two processes have about the same probability, the resulting
light scattering spectrum shown schematically in figure 4 demonstrates Stokes and anti-Stokes
peaks. Measuring the frequency shift of both peaks one obtains the frequency of the spin wave
participating in the BLS process. Changing the scattering geometry one can sweep the value
of q and measure the corresponding ω. Thus, the spin wave dispersion ω(q) can be studied. In
a BLS experiment in opaque systems with backscattering geometry the value of the in-plane
wavevector �q, transferred in the light scattering process, can be varied by changing the angle
of light incidence, θ , measured from the surface normal: q = (4π/λLaser) sin θ . The absolute
value of q varies in the range (0–2.5)×105 cm−1 for the Ar line with its wavelength 514.5 nm.
The frequency resolution of the technique is about 0.1–0.2 GHz, which corresponds to 10 mK
or 1 µeV.

The differential light scattering cross section d2σ/d� dωS, i.e., the number of photons
scattered into the solid angle d� in the frequency interval between ωS and ωS + dωS per unit
incident flux density, can be written as follows [27]:

d2σ

d� dωS
∝ 〈δε∗(�qI − �qS)δε(�qI − �qS)〉ωI −ωS (10)

with δε the dynamic (fluctuating) part of the dielectric permittivity, which is caused by the spin
waves due to magneto-optical effects and which gives rise to the scattering. δε is proportional
to the dynamic part of the magnetization �m of the spin wave. The correlation function is given
by

〈δε∗(�q)δε(�q)〉ω =
∫

d(t2 − t1) d3(�r2 − �r1) exp[−iωt − i�q · (�r2 − �r1)]

〈δε∗(�r1, t1)δε(�r2, t2)〉 ∝
∫

d(t2 − t1) d3(�r2 − �r1) exp[−iωt − i�q · (�r2 − �r1)]

× 〈 �m∗(�r1, t1) �m(�r2, t2)〉
(11)

with 〈· · ·〉 the statistical average. For light scattered from a spin wave propagating in an infinite
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Figure 5. A schematic view of a BLS set-up.

medium, the spatial integration volume is the entire space. In this case the correlation function
in equation (11) is nonzero only if the relations ω = ωS − ωI and �q = �qS − �qI are fulfilled,
yielding the conservation laws of energy and momentum, described by equation (9). However,
if a spin wave mode propagates in a confined medium (magnetic film, stripe or dot) the
integration volume is restricted by the confinement. The conservation conditions are fulfilled
only for the components of the wavevector which are along the unconfined coordinates. In the
case of a film these are two components of the in-plane wavevector, �q; in the case of a long
stripe this is the component of �q parallel to the stripe axis. It is also clear from equation (11)
that the dependence of the differential light scattering cross section on the component of �q
perpendicular to the stripes is determined by the Fourier components of �m(y). Below we will
discuss this in more detail.

A typical experimental set-up for BLS studies is shown schematically in figure 5. Light
of a frequency stabilized laser is focused onto the sample by an objective lens. The light
scattered from the sample (elastic and inelastic contributions) is collected and sent through a
spatial filter for suppressing background noise before entering the interferometer. The central
part of the interferometer consists of two Fabry–Perot etalons FP1 and FP2. The tandem
arrangement avoids ambiguities in the assignment of inelastic peaks to the corresponding
transmission orders [28, 29]. In order to obtain the high contrast necessary for detecting the
weak inelastic signals, the light is sent through both etalons several times using a system of
retroreflectors and mirrors. The frequency selected light transmitted by the interferometer
is detected by a photomultiplier or an avalanche photodiode after passing through a second
spatial filter for additional background suppression. A prism or an interference filter between
the second spatial filter and the detector serves for suppression of inelastic light from common
transmission orders outside the frequency region of interest. Data collection is performed by
a personal computer or by a multichannel analyser.
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and time resolution. For a discussion of the components see the main text.

5. Time and space resolved light scattering

An inhomogeneous internal magnetic field strongly affects dynamic properties of small
magnetic elements. However, for a better understanding of dynamic properties of such
elements a study of spin wave properties of magnetic systems with a macroscopical
inhomogeneous applied field is very useful. As an example, an investigation of both the
spatial and the temporal properties of spin wavepackets propagating in a ferrite film with an
inhomogeneous applied magnetic field will be discussed in section 7. For this study a novel
experimental technique—time and space resolved BLS as shown schematically in figure 6
has been used. It is based on a standard BLS set-up and was originally developed to study
the propagation and interaction of nonlinear spin wavepackets in magnetic ferrite films [30].
Spin wavepackets are generated by a microwave input antenna and detected using BLS. The
microwave excitation set-up needed for the excitation is built as follows. CW microwave
power is created by a microwave generator. A pulse generator generates pulses of 10–30 ns
duration. The pulses are sent to a microwave modulator to create a pulsed microwave field. If
a microwave pulse with a frequency ω0 is applied to the input antenna, a spin wave is launched
with a wavevector determined by the dispersion relation ω0(�q) of the spin wave. Spin waves are
effectively excited in a wavevector interval q < 300 rad cm−1, with the upper bound imposed
by the width of the antenna. Since the above value is much smaller than the wavevectors of
the scattering photons, the light scattered in the forward direction is investigated to achieve a
high sensitivity in this low wavevector regime. The spatial distribution of the spin wavepacket
is detected by scanning the laser beam across the sample; this is performed by a motorized
sample mount.

Temporal resolution is added by using a time correlated single photon counting method
similar to time-of-flight measurements in, e.g., mass spectroscopy. If the spin wave pulse,
launched by the antenna, crosses the laser spot, light is inelastically scattered. The scattered



S2584 S O Demokritov

light passes through the interferometer and is detected by a single photon detector. The output
signal from the pulse generator used in the microwave set-up also starts a system counting the
elapsed delay time between the launch of the spin wave pulse and its arrival at the position
of the laser spot. The output signal of the detector is used to stop the counter. The events of
photon detection are then accumulated in a 16-bit memory cell of a 32 K linear memory array;
the cell number is determined by the measured elapsed time. The procedure is repeated with a
repetition rate of typically 1 MHz. After accumulating a large number of events the content of
the memory array represents the temporal variation of the light scattering cross section (which
is proportional to the spin wave intensity) at the current position of the laser spot. By repeating
the procedure for different positions of the laser spot on the sample, two dimensional maps
of the spin wave intensity are constructed for different values of the delay time. The data are
arranged in a digital video animation with each frame representing the spatial distribution of
the spin wave intensity for a given delay time. The entire system is built on the basis of a
digital signal processing device which interacts with a PC via a RS232 interface. The device
can handle up to 2.5 × 106 events s−1 continuously. A lower limit of about 1–2 ns on the
time resolution is imposed by the intrinsic time resolution of the BLS spectrometer. Typical
accumulation times are 5 s/position of the laser spot.

Let us make a final comment on the spatial resolution of the BLS set-up. The resolution is
mainly determined by the size of the laser beam focus. Due to this restriction it is impossible
to determine directly the spatial profiles of spin wave modes confined in micron-size magnetic
stripes and dots with a typical size of 1–2 µm. However, if BLS is used in the ‘Fourier
microscope’ mode, the light scattering intensity is measured as a function of the transferred
in-plane wavevector. As has been shown in the previous section, this intensity is proportional
to the Fourier component of the spin wave mode profile. On the basis of this information
the mode profile in small magnetic elements is reconstructed. In the ‘Fourier microscope’
mode the spatial resolution, δ, is determined by the accessible transferred wavevector interval
π/�q . For light scattering experiments it follows �q = 2qI and δ = 120–130 nm for green
laser lines. On the other hand, a typical size of the spin wavepackets used for the studies
in artificially created inhomogeneous fields in ferrite films is about 0.5–1 mm. In this case
the spatial profile of the packet can be measured directly, scanning the laser beam along the
sample.

6. Effect of lateral quantization

The effect of lateral spin wave quantization within a magnetic element was discovered several
years ago using BLS [24] and is described in detail in original papers [25] and reviews [26, 31].
Here we will just present the most important features of the effect. In its clearest form it takes
place if, e.g. a long magnetic stripe is magnetized along its length. In this case the static
internal field is homogeneous within the stripe and equal to the static external field, Hi = He.
The side boundary of the stripe causes the quantization of the spin wave wavevector, which
manifests itself in quantized frequencies of the modes and gaps in the spin wave dispersion
spectrum. Figure 7 demonstrates the experimentally measured spin wave dispersion in an
array of magnetic stripes with a thickness of d = 40 nm, a width of w = 1.8 µm and with
different separations (0.7 and 2.2 µm).

Clear modification of spin wave dispersion with creation of spin wave modes with
quantized frequencies and gaps in the dispersion is seen. From the fact that there is no noticeable
difference between the data for the samples with the same stripe width but different stripe
separations one can conclude that a single stripe effect is observed. The observed quantized
modes can be understood as Damon–Eshbach-like modes with a quantized wavevector parallel



Dynamic eigen-modes in magnetic stripes and dots S2585

0.0 0.5 1.0 1.5 2.0 2.5
6

7

8

9

10

11

12

13

14

15

16

17

d = 40 nm

n=4

n=2

n=3

n=1

n=0

S
pi

n 
W

av
e 

F
re

qu
en

cy
 (

G
H

z)

q (105 cm-1)

Figure 7. The spin wave dispersion curves obtained for an array of stripes of thickness 40 nm, width
1.8 µm and separations between stripes of 0.7 µm (open symbols) and 2.2 µm (solid symbols).
The external field applied along the stripe length is 500 Oe. The horizontal lines indicate the
results of a calculation based on the approach described, with the quantized values of q obtained
for the unpinned boundary conditions. The dashed lines showing the hybridized dispersion of the
Damon–Eshbach mode and the first PSSW mode were calculated numerically for a continuous film
with a thickness of 40 nm. On the right-hand side the mode profiles are illustrated. The samples
were prepared using XRL.

to the stripe width. For the calculation of the quantized values of the wavevector and,
thus, mode frequencies, a boundary condition on the side edges of the stripe (y = ±w/2)
similar to equation (4) has been proposed in [24, 25]. The pinning length, ξ , was set to
be infinite, corresponding to the pinning parameter D = 0, which is justified by the small
values of anisotropies in permalloy. As is seen in figure 7 the approach nicely describes the
experimental data presented. The same approach was used for calculation of the mode profiles,
also shown in the figure. However, the data obtained later for samples with smoother side edges
prepared using EBL cannot be described using unpinned boundary conditions. Very recently
a thorough theoretical analysis of the problem [32] has shown that the inhomogeneity of the
dynamic internal field near the side edges of the stripe causes a ‘dipolar pinning’ which has,
mathematically, the same form as the Rado–Wertmann exchange boundary conditions:

±∂ �m
∂y

+
1

ξ
�m|y=±w/2 = 0. (12)

The pinning length in this case is determined as follows:

ξ ≈ d
1 + 2 ln(w/d)

2π
. (13)

From equation (13) it is clear that in thin stripes (w � d) a strong pinning should be observed
for low index modes. It is, however, necessary to make three important remarks in connection
with equations (12) and (13):

(i) For a particular quantized spin wave mode the pinning scale ξ slightly depends on the
mode number, i.e., the mode profile.

(ii) Even at constant ξ , the pinning strength, which is determined as the ratio of the mean
value of the dynamic magnetization

∫
mn(y) dy/w to its value at the edges mn(y)y=w/2,

decreases with the mode number, n, since the typical length determined by mn(y) scales
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Figure 8. (a) Measured BLS intensities (black squares) of an array of stripes (thickness 33 nm,
width 1 µm, separation 0.3 µm) as a function of the wavevector q and the mode number n. The grey
profiles illustrate the results of calculation based on the approach of lateral spin wave quantization
with the dipole pinning. (b) Detailed data for the quantized mode with n = 3. Solid curve: the
same as in (a); dashed curve: complete pinning; dotted curve: unpinned mode.

with n as ∼w/n. Thus, the typical length approaches the pinning length, ξ and, as was
discussed in section 3, the pinning is not so strong.

(iii) The above approach is only applicable if the side edges are smooth, the smoothness
scale being determined not by the width of the stripe, but by its thickness. In fact, the
strong inhomogeneous dynamic dipole field responsible for the dipole pinning is mainly
concentrated near the edges within a distance comparable with the thickness of the stripe.
If the edges are rough on that scale, the dipole field is strongly affected by the roughness.

The success of the above approach is demonstrated by figure 8,showing the experimentally
measured BLS intensity of different modes in an array of magnetic stripes with a thickness
of d = 33 nm, a width of w = 1.0 µm and a separation of 0.3 µm, prepared using EBL,
together with the theoretical profiles calculated on the basis of the approach of quantized spin
wave modes with the effective dipole pinning on the side edges. The agreement between the
experimental data and the result of the calculation is remarkable. To emphasize the importance
of the boundary conditions the data for the quantized mode with n = 3 are compared with
several theoretical curves: the solid curve was calculated using the correct dipole pinning, the
dashed curve corresponds to complete pinning and the dotted curve represents the unpinned
mode. The figure clearly demonstrates the ability of the BLS method in the Fourier microscope
mode to provide detailed information on profiles of the quantized modes.

7. Propagation, reflection and tunnelling of spin waves

The physical origin of the spin wave quantization effects is the lateral confinement due to lateral
edges of the element. This effect has not very much to do with inhomogeneity of the internal
field in the element; it has been discovered in magnetic stripes with a homogeneous internal
field. However, as will be discussed in the following section, a strongly inhomogeneous internal
field in the element resulting from demagnetizing effects can cause turning points within the
element which reflect spin waves and thus create a spin wave well.

One can model and visualize turning points for spin waves experimentally in an unconfined
magnetic film, applying an inhomogeneous external field. For these experiments the space and
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Figure 9. Propagation of a BVMS spin wavepacket across a YIG film with local field
inhomogeneity, observed by means of space and time resolved BLS. Snapshots of the two
dimensional spin wave intensity at given delay times indicated in the middle are shown. The
left panel represents the case of a local maximum of the field, corresponding to a potential dip; the
right panel represents the case of a local minimum of the field, corresponding to a potential well.
The field profiles are displayed in the bottom graphs.

time resolved BLS technique discussed in section 5 is very useful (see figure 6). Spin
wavepackets in a transparent yttrium iron garnet (YIG) film are generated by a microwave input
antenna and are detected using BLS. In addition to the described components of the technique
a narrow conductor of 50 µm diameter mounted across the film carrying a dc current is used
to create an inhomogeneous field.

The antenna is connected to a pulsed microwave source with carrying frequency ω0/2π =
7.315 GHz. An external field is oriented parallel to the film and the propagation direction of
the spin waves. As is discussed above, such a set-up corresponds to the BVMS wave geometry,
characterized by a negative group velocity of the spin waves [26]. For the value used for the
external field He = 1898 Oe BVMS waves with a wavevector of 120–130 cm−1 are excited.
The maximum inhomogeneous field created by the dc conductor is about 20 Oe, a value which
is much smaller than He. Nevertheless, such a small field can strongly disturb the spin wave
propagation.

Spin waves in an inhomogeneous field have already been discussed in section 3. Depending
on the direction of the dc current, the total field (and, thus, the gap of the spin wave spectrum)
is locally either enhanced or reduced by the Oersted field generated by the current flowing
through the conductor. If the inhomogeneity is strong enough and has an appropriate sign it
serves as a turning point for the spin wave and reflects the spin wavepacket. Such a reflection
is experimentally demonstrated in figure 9. Shown are two sequences of snapshot frames
for different delay times as indicated. The images put in the left panel are measured for an
enhancement of the local field by the dc current, whereas the right panel corresponds to a
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reduced local field. Each snapshot displays the normalized two dimensional distribution of
the spin wave intensity over the film, presented via a colour code.

The left panel of figure 9 demonstrates spin wave propagation in the film. As is discussed
above, a region of slightly enhanced local field cannot be a turning point for a BVMS
wavepacket. The wave accommodates its wavevector according to the dispersion law and
passes the region of field inhomogeneity. The weak reflection observed in the frames is due
to the non-adiabatical nature of the process: in fact the wavelength of the wave in not much
smaller than the width of the region.

Much more interesting effects are presented in the right panel corresponding to a reduced
local field. One can easily see that the region of a reduced field inhibits propagation of spin
waves. If due to field reduction the maximum value of the BVMS wave frequency (the gap in
the dispersion) is below the spin wave frequency of the packet, the region of the field reduction
serves as a turning point for the packet and reflects it. In fact, it is a forbidden region for
the wave, since there exist no BVMS waves with real wavevectors in the region. This effect
is reminiscent of the quasi-classical quantum mechanical problem of particle reflection and
tunnelling. Indeed, the right panel of figure 9 demonstrates that the spin wavepacket is partially
reflected and partially transmitted by the forbidden region. Despite the obvious similarity with
the quantum mechanics problem, the physics of the spin wave tunnelling has not become clear
so far. In contrast to the case of the Schrödinger equation having wavefunction solutions with
imaginary wavevectors for the ‘forbidden’ energies, the exact solution of the Landau–Lifshitz
equation with an inhomogeneous applied field for imaginary wavevectors is not obvious, since
a long range magnetic dipole interaction must be taken into account.

8. Spin wave wells

In this section we discuss dynamic excitations in small magnetic items (long stripes and
rectangular elements) with a large inhomogeneity of the internal field. It is known that in
a non-ellipsoidal element the internal field decreases near the edges of the element [33]. In
some cases zones with zero internal fields can be created [34]. The problem of inhomogeneous
internal field has been avoided in section 6, where the spin wave quantization in stripes has
been discussed, since the external field was applied along the long axis of the stripes.

In the following discussion we assume a Cartesian coordinate system, as shown in figure 1,
in which the x-axis is perpendicular to the plane of the elements and the y-axis is along the
long axes of the stripes. The wavevector �q is chosen along the z-axis, i.e., perpendicular to
the stripes. Figure 10 shows two typical BLS spectra obtained from an array of stripes of a
width w = 1 µm, a length of 90 µm and a distance between the stripes of 0.5 µm for the
external in-plane magnetic field He = 500 Oe for different orientations of the field. A spectrum
for an unstructured film of the same thickness is also shown for comparison. Spectrum (a)
is obtained for �He oriented along the y-axis, thus representing the DE geometry, discussed
above. Spectrum (b) is recorded with both �q and �He aligned along the z-axis. As is seen
in figure 10 both spectra contain several distinct peaks corresponding to spin wave modes.
The high frequency peaks indicated as PSSW can be easily identified as exchange dominated
PSSW modes also observed in unpatterned films. Their frequencies are determined by the
exchange interaction and the internal field.

To investigate the nature of the other observed excitations, the dispersion was measured
by varying q . It is displayed in figure 11 for both orientations of �He.

Figure 11(a) representing the DE geometry clearly demonstrates the lateral quantization
of the DE spin waves, resembling a typical ‘staircase’ dispersion, discussed in section 1.5.
The interval of the observation of each mode in the q-space �q ≈ (0.8–1.0) × 105 cm−1
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Figure 11. Spin wave dispersion of the stripe array measured at He = 500 Oe for (a) the DE
geometry, (b) the BVMS geometry. The solid lines represent the results of calculation.

is in agreement with the width of the stripe w = 1 µm, giving 2π/w = 0.63 × 105 cm−1.
The frequency of the PSSW mode coincides with that of the PSSW mode for the unpatterned
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Figure 12. (a) The BLS spectrum obtained at He = 600 Oe for the array of rectangular elements
with lateral sizes 1×1.2 µm2, distance between the elements δ = 0.3 µm and thickness d = 35 nm
for q = 0.4 × 105 cm−1. The field is applied along the long axis of the element. (b) The BLS
spectrum of a continuous film for the same values of the field and the wavevector.

film and corresponds to an internal field of H = He = 500 Oe, thus corroborating negligible
demagnetizing effects in the stripes magnetized along their long axes.

The dispersion presented in figure 11(b) for �He parallel to the z-axis (i.e. �He ‖ �q, the
BVMS geometry) differs completely from that shown in figure 11(a). First, the PSSW mode is
split into two modes, with frequencies corresponding to internal fields of H = 300 and 0 Oe,
respectively. This corroborates the well known assertion that the internal field is determined
by essential demagnetizing effects and can be zero near the stripe edges [34]. Second, a broad
peak is seen in the spectra in the frequency range 5.5–7.5 GHz over the entire accessible interval
of q . The shape of the peak varies with q , thus indicating different contributions of unresolved
laterally quantized modes to the scattering cross section at different q . Third, a separate, low
frequency, dispersionless mode with a frequency near 4.6 GHz (indicated as ‘LM’ in figures 10
and 11) is observed over the entire accessible wavevector range (qlim = 2.5 × 105 cm−1) with
almost constant intensity. This is a direct confirmation of a strong lateral localization of the
mode within a region with the width �r < 2π/qlim = 0.25 µm. From the low frequency of
the mode one can conclude that it is localized near the edges of the elements, since these are
the field-free regions [33, 34].

Further evidence for the existence of localized modes in structured systems is provided
by the observation of a corresponding mode in rectangular elements. For example, figure 12
demonstrates a BLS spectrum taken for an array of rectangular elements with lateral sizes
1 × 1.2 µm2, distance between the elements δ = 0.3 µm and thickness d = 35 nm. The
peak near 6.5 GHz is clearly identified as a localized mode due to its observation over the
entire range of accessible wavevectors. Similarly to the case for the stripes a frequency shift
of the PSSW mode with respect to that of a continuous film is seen in figure 12. However, one
should mention here that the identification of the modes observed in rectangular elements is
more complicated than for the case of the stripes. This is connected with a more complicated,
two dimensional mode quantization in the elements.
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A quantitative analytical description of the spin wave modes observed in the stripes is as
follows. As is discussed in section 3 the frequency of the spin wave, ν, depends on the angle
between the in-plane wavevector and the static magnetization. The former can be written
as �q = qy�ey + qz�z. If, for reference, �He ‖ �ey and �q ‖ �ez (DE geometry), the analysis
of spin wave quantization is straightforward [25]. One assumes a quantization condition
for q: q = mπ/w where m = 1, 2, 3, . . .. The frequencies of these quantized modes
calculated using equation (2) for m = 1, 2, 3, 4, 5 (laterally quantized modes) and for the
PSSW mode are in good quantitative agreement with the results of the experiments as shown
in figure 11(a). The material parameters used are: 4π MS = 10.2 kOe, A = 10−6 erg cm−2,
γ /2π = 2.95 GHz kOe−1.

If �He ‖ �ez , the effect of demagnetization due to the finite stripe width is very large and
the internal magnetic field is strongly inhomogeneous and differs from He. It can be evaluated
as [33, 34]:

H (x, y, z) = He − Nzz(x, y, z) × 4π MS (14)

where Nzz (x, y, z) is the demagnetizing factor. This inhomogeneous field creates a potential
well for spin waves resulting in localization. The averaged value of H (z) obtained by
integrating equation (14) along the axes x and y over the stripe cross section is shown in
figure 14. For H > 0 the magnetization is parallel to �He. Near the edges, however, regions
with H = 0 and with continuously rotating magnetization are formed [34]. Since the rotation
of the static magnetization dramatically changes the dispersion of spin waves [16], regions
with zero internal field reflect spin waves propagating from the middle of the stripe towards
these regions. On the other hand, a spin wave propagating in an inhomogeneous field might
encounter the second turning point even if the magnetization is uniform. As is discussed above,
for large enough values of the internal field there are no allowed real values of q consistent with
the spin wave dispersion [35]. Thus, a potential well for propagating spin waves is created.
Similarly to the case for the potential well in quantum mechanics, the conditions determining
the frequencies νn of possible spin wave states in the well created by the inhomogeneous
internal field are determined by the equation

2
∫

q[H (z), ν] dz = 2rπ, (15)

where r = 1, 2, 3, . . . and q[H (z), ν] is found from the spin wave dispersion. This states
that the total phase shift of a wave propagating from one turning point to another and then
returning is a multiple of 2π . As will be discussed below, additional phase jumps can appear
at the turning points. These jumps are firstly neglected in our analysis for the sake of clarity.

We will illustrate these ideas in the following. The dispersion curves for spin waves with
�q ‖ �H and p = 0 calculated using equation (2) for different constant values of the field
are presented in figure 13. A dashed horizontal line shows the frequency of the lowest spin
wave mode ν1 = 4.5 GHz obtained from equation (15) for r = 1 in good agreement with
the experiment. It can be seen from figure 13, that for H > 237 Oe there are no spin waves
with the frequency ν1 = 4.5 GHz. Therefore, the lowest mode can only exist in the spatial
regions in the magnetic stripe where 0 Oe < H < 237 Oe. The corresponding turning points
are indicated in figure 14 by the vertical dashed lines. Thus, the lowest mode is localized in
the narrow region �z near the lateral edges of the stripe where 0.26 < |z/w| < 0.39. The
mode is composed of exchange dominated plane waves with qmin < q < qmax, as indicated in
figure 14.

The higher order spin wave modes with r > 1 having their frequencies above 5.3 GHz
are not strongly localized and exist anywhere in the stripe where the internal field is positive
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Figure 13. Dispersion of plane spin waves in the BVMS geometry at constant internal fields as
indicated.

0.10.0 0.2 0.3 0.4 0.5
0

100

200

300

∆∆∆∆ Z

H
 (

kO
e

)

z/ w

Figure 14. The profile of the internal field in a stripe. �z shows the region of the lowest mode
localization.

(0 < |z/w| < 0.39). In the experiment they show a band, since the frequency difference
between the νr- and νr+1-modes is below the frequency resolution of the BLS technique.

The above presented one dimensional analytical approach is applicable to long magnetic
stripes. To describe the spin wave modes of two dimensional rectangular magnetic elements
micromagnetic simulations of nonuniform magnetic excitations in such elements have been
performed [36]. The method used is based on the Langevin dynamics; the time evolution of
the magnetization distribution in the magnetic element, which is discretized into Nx × Nz =
100×180 cells with magnetic moments �µi , is simulated using the stochastic Landau–Lifshitz–
Gilbert (LLG) equation [36]. The effective field �H eff

i acting on the i th moment consists of a
deterministic part �H det

i (which includes an external magnetic field and the fields created by
the exchange and dipolar interactions between different cell moments) and a fluctuating part
�H fl

i (t). The correlation properties of this fluctuating field, which is intended to simulate the
influence of thermal fluctuations, may be quite complicated in a micromagnetic system with



Dynamic eigen-modes in magnetic stripes and dots S2593

a) b)

H = 600 Oe

Figure 15. (a) An AFM image of rectangular elements; (b) the calculated distribution of static
magnetization in an element.

a) b)

H = 600 Oe

Figure 16. (a) A mode profile of a low frequency spin wave mode with ν = 5.3 GHz (note the
mode localization near the edges) in the rectangular elements; (b) a mode profile of a spin wave
mode with ν = 12.2 GHz.

interaction in contrast to the standard single particle situation [37]. These properties have not
been studied so far. It is, however, common practice to use a simple approximation describing
the fluctuating field in the form of δ correlated random noise [36, 38, 39]. We believe that the
results of simulations with such a delta correlated noise should provide at least qualitatively
a correct picture of the spatial distribution of different magnetic eigen-modes in the system.
In the framework of this approximation the noise power has been calculated for a system of
interacting magnetic cells as in [38]. The stochastic LLG equation was then solved using the
modified Bulirsch–Stoer method.

The results of the simulation are presented in figures 15 and 16. Figure 15(a) presents
a scanning force microscope image of the rectangular elements studied. Figure 15(b) shows
the distribution of the static magnetization obtained by solving the LLG equation without any
fluctuations and used as a starting point for the dynamic simulation. Next the field �H fl

i (t)
was turned on. After the thermodynamic equilibrium state of the system was reached, the
values obtained for all cell moments were recorded. Afterwards, using Fourier analysis,
the oscillation spectrum of the total magnetic moment of the element was obtained. In the
frequency interval 3–20 GHz this Fourier spectrum demonstrates several maxima. The Fourier
components of each cell magnetization µi,ω corresponding to these maxima were calculated
and squared, to allow comparison with the measured spin wave intensities. As an example,
the spatial distributions obtained for the frequencies ν = 5.3 and 12.2 GHz are presented
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Figure 17. The BLS spectrum for a transferred wavevector q = 0.47 × 105 cm−1 and an external
field of He = 800 Oe. The inset shows the experimental geometry used.

in figures 16(a) and (b). It is clear from figure 16(a) that the low frequency mode is strongly
localized in the narrow regions near the edges of the elements that are perpendicular to the
applied field. In contrast, and for comparison, the mode with ν = 12.2 GHz shown in
figure 16(b) is not localized.

Thus, we have shown that a strong inhomogeneity of the internal field causes the creation
of ‘spin wave wells’ (SWW) in magnetic stripes and rectangular elements and the localization
of spin wave modes in these wells. It is clear from the above consideration that the number of
states localized in the well depends on the depths of the well, which is controlled by the value
of the applied external field. This is demonstrated in figure 17. Shown is a BLS spectrum for
a transferred wavevector q = 0.47 × 105 cm−1 for a higher external field of He = 800 Oe
instead of 500 Oe as is the case for figure 10. As is seen, in addition to the PSSW modes the
spectrum contains two spin wave eigenstates of the SWW (instead of one as in figure 10).

Figure 18 shows the dependence of the frequencies of the observed modes on He. While
the magnitude of He is small and not sufficient to saturate the stripe, only a single PSSW mode
corresponding to Hi = 0 is present in the spectrum. At some critical field He = H ∗ the PSSW
peak begins to split. The first peak corresponding to Hi = 0 retains its frequency, but loses its
intensity with increasing He. The frequency of the second peak (which appears at He = H ∗)
increases with the applied field, indicating the increase of Hi in the central part of the stripe.
The observed value of the critical field H ∗ = 220 Oe is in agreement with the calculated
demagnetizing field in the stripe centre, Hd(y = 0), based on the approach presented in [33].
Static magnetometry also shows a sharp increase of the stripe magnetic moment for He > H ∗,
indicating partial magnetic saturation of the stripe.

For He > H ∗ a broad band of non-resolved spin wave excitations is seen [21] in the
low frequency part of experimental spectra. At higher He at first one and then more narrow
peaks are observed in addition to the band. To understand the appearance of several multiple
states in a SWW, one should take into account that the depth of the well strongly depends on
He. In fact, the bottom of the well corresponds to Hi = 0 independently of He. The field
which determines the position of the top of the well, however, can be roughly estimated as
He−Hd(y = 0) ≈ He−H ∗. For a small difference He−H ∗ the well is too shallow and there is
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Figure 18. Frequencies of the modes observed in the stripes at q = 0.47 × 105 cm−1 as a function
of He. The vertical dashed line marks the critical field H ∗. Note the constant frequency of one
PSSW mode and the increase in frequency for the other mode for He > H ∗. The grey region
illustrates the band of non-resolved laterally quantized excitations.

no room in the well for a localized spin wave state. With increasing He the well becomes deeper
and, as a result of that, at first one and then more localized spin wave states appear in the well.

To obtain a complete quantization condition for localized spin wave states in a SWW, we
need to modify equation (15) by adding phase jumps at the turning points of the SWW:

�φl + �φr + 2 ×
∫ yr

yl

q(Hi(y), ν) dy = 2nπ, (16)

where n = 1, 2, 3, . . . and �φl,�φr ∈ [0, π] are the phase jumps at the left and right turning
points, respectively. Henceforth we will call the third term in (16) the quantization integral.
Note that since the dispersion of a spin wave differs from that of an electron, the results for the
phase jumps obtained for an electron in a quantum well may not be used for SWW. However,
the difference between the quantization integrals calculated for two successive modes should
be equal to 2π , if �φl and �φr are the same for all the localized modes.

To determine the turning points and the quantization integrals for the different spin wave
states in the SWW, the profile of Hi in the saturated region (see the solid curve in figure 19) has
been calculated using the approach proposed in [33]. The equation ν = ν(q(y), Hi(y)) has
been numerically solved for the experimentally measured values of ν. As is discussed above,
the point at which the solution q(y) does not exist for real q(y) is the turning point. The second
turning point was assumed to be at the boundary between the saturated and zero field regions.
Based on the obtained dependences q(y) the quantization integrals for the modes have been
calculated.

The main results of the calculation can be summarized as follows:

(a) The calculated quantization integrals for the localized states in the SWW decrease with
increasing external field, probably due to the field dependence of �φl,�φr .

(b) The localization length ξ = yr − yl is about 50 nm for the lowest localized state and
200–300 nm for the states having higher frequency. The localization lengths decrease
with increasing He.
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Figure 19. The internal field (solid curve) and wavevector of the observed states (dashed lines)
calculated as functions of y for an applied field of 970 Oe. yl and yr are the turning points of the
localized modes with the frequencies as indicated. The arrows at the top of the figure illustrate the
orientation of the static magnetization.

(c) Although the quantization integrals for two lowest localized modes depend on He, their
difference is almost constant and equal to (4.2 ± 0.4)π . This is a direct confirmation of
the applicability of the quasi-classical quantization conditions (15) and (16) to the spin
wave modes localized in a SWW.

The fact that the difference between the quantization integrals corresponding to the two
lowest localized spin wave states in the SWW is close to 4π (and not to 2π) suggests that
only the two odd-numbered modes (n = 1 and 3) are detected having a similar (symmetrical)
distribution of the spin wave intensity about the centre of the well. The reason that only the
symmetric modes in the BLS experiment are seen is related to the strong spatial localization of
these modes: qξ � 1, where q = (1–2) × 105 cm−1 is a typical wavevector transferred in the
BLS process. This inequality means that the light fields are practically homogeneous on the
spatial scale of the spin wave mode localization length and, similarly to the case for standing
spin wave resonance experiments [40], only the odd (symmetric) spin wave states contribute
to the observed BLS intensity [25].

9. Conclusions

In this paper we have discussed the dynamic eigen-modes of confined magnetic objects. These
modes have inherited some properties of plane spin waves, which are dynamic eigen-modes of
unrestricted magnetic media. However, effects caused by confinement result in new features
distinguishing the spin wave modes in confined elements from the spin waves. We mention
here a discrete dispersion spectrum of the modes due to lateral quantization. It is found that an
inhomogeneous internal field present in all practically important objects strongly affects their
magnetic dynamics. The phenomenon of mode localization of the mode in a small part of the
object due to the inhomogeneous internal field has been discussed in detail.

Studies of magnetic dynamics in inhomogeneous fields have opened a new approach to
fundamentals of dynamic magnetic eigen-modes. It is now clear that they can be described in a
similar way to electrons and holes in solid state physics. For example, spin wave reflection and
tunnelling through a magnetic barrier are experimentally observed. This new field is currently
expanding and a deep understanding still needs to be achieved. In general, the magnetic
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dynamics of confined objects is an exciting field with probably many new discoveries and
potential applications to come.
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